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ABSTRACT
Text predictions play an important role in improving the perfor-
mance of gaze-based text entry systems. However, visual search,
scanning, and selection of text predictions require a shift in the
user’s attention from the keyboard layout. Hence the spatial posi-
tioning of predictions becomes an imperative aspect of the end-user
experience. In this work, we investigate the role of spatial position-
ing by comparing the performance of three different keyboards
entailing variable positions for text predictions. The experiment
result shows no significant differences in the text entry perfor-
mance, i.e., displaying suggestions closer to visual fovea did not
enhance the text entry rate of participants, however they used more
keystrokes and backspace. This implies to the inessential usage of
suggestions when it is in the constant visual attention of users, re-
sulting in increased cost of correction. Furthermore, we argue that
the fast saccadic eye movements undermines the spatial distance
optimization in prediction positioning.
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1 INTRODUCTION
Text entry is a complex process that involves the primary task
of selecting desired keys to form words and sentences and then
reading through the collected input with the eyes to check for
correctness. This complex task becomes further challenging when
a wrong entry is detected leading to greater effort in correcting
it. In static dwell time activated gaze-based text entry, both the
inspection of the virtual on-screen keyboard and the selection of
the keys from the keyboard is done by gaze with the help of an
eye tracker. The user fixates on the designated key that they would
like to select and it gets selected based on the set dwell time. This
task being cognitively demanding [Sengupta et al. 2017b] leads
to slower gaze-based text entry speed, even for an advanced user.
Another reason for the slow speed of eye typing is that eyes do not
allow parallel processing like normal hand typing does with ten
fingers [Räihä and Ovaska 2012].

Several novel approaches to improve gaze-based text entry exists
[Morimoto and Amir 2010; Panwar et al. 2012; Pedrosa et al. 2015;
Sarcar et al. 2013; Sengupta et al. 2017a]. Amongst them, one signif-
icant methodology is the exploitation of intelligent text prediction
methods for more efficient text entry [MacKenzie and Zhang 2008].
Using the text prediction feature, one can reduce the number of
keystrokes required to write the word, thus improving the speed
and the efficiency. The role of the interface design and accessibility
of text predictions also forms an important direction to improve
gaze-based text entry experience.

Another concern for text entry on virtual on-screen keyboard (for
both touch-based and gaze-based) is the time taken for visual search
- the process of searching/scanning letters or correct predictions on
the virtual keyboard. Visual search leads to a shift focus from the
area of the keyboard layout. To overcome this challenge of visual
search and scan time in touch-based virtual keyboards, variable
positioning of text predictions have been analyzed [Griffin et al.
2015b; Morin et al. 2011]. In gaze-based text entry keyboard layouts,
text predictions have been placed at different positions [Best and
Duchowski 2016; Johansen et al. 2003]. It is, however, unclear if this
variable positioning of text predictions reduces the visual search and
scanning cost. Furthermore, research approaches in the eye tracking

1https://github.com/OptiKey/OptiKey/wiki
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environment ascertain the null effect of variable positioning of
objects since eye saccades and movements and are very fast [Sibert
and Jacob 2000]. Hence, we attempt to comprehend the phenomena
by studying if text prediction spatial positioning has any impact on
the performance of gaze-based text entry.

In this work, we performed a comparative analysis of three dif-
ferent designs of QWERTY keyboards layouts having dwell time
activation of keys. We evaluated in this summative study, if the
positioning of text predictions correlate with the performance for
gaze-based text entry.We found that all the three designs performed
almost the same when it came to text entry speeds. However, the
cost of correction increased as the position of text predictions were
brought closer into the area of visual focus. This implies that bring-
ing text predictions closer to the visual focus for gaze-based text
entry does not necessarily enhance the performance. It might ac-
tually influence users to be overly dependent on text predictions
thereby hampering its usability.

2 TEXT PREDICTION AND THEIR
POSITIONING IN VIRTUAL KEYBOARDS

Text predictions are generated from a language corpus or a dictio-
nary containing the word frequency. Predictive algorithms help the
user in suggesting words from the corpus that are most likely to
occur after a particular sequence of user-selected characters. Re-
search focused on letter predictive models like n-gram [Janpinijrut

et al. 2011] and k-gram [Miró-Borrás and Bernabeu-Soler 2009],
which suggest the following terms of a given sentence based on the
previous terms. Reflective text entry [Sandnes 2015] improved the
user experience of text entry as it considered abbreviated forms of
words.

There have been several gaze-based text entry systems [Diaz-
Tula andMorimoto 2016; Johansen et al. 2003;MacKenzie and Zhang
2008] that use text prediction as an essential feature in the virtual
keyboard space. Prediction mechanisms are particularly valuable
for text entry with virtual keyboards (for gaze-based as well as
touch-based systems) [de Sousa Gomide et al. 2016; Sharma et al.
2010]. The success and usability of text predictions depend highly
on the presentation and user interface parameters [Garay-Vitoria
and Abascal 2006]. This includes (i) the number of suggestions to
display (too fewmight miss relevant suggestions, and too many will
add extra delay of scanning long list), (ii) layout of the presentation
(horizontal, vertical, triangular etc.), and most importantly (iii) the
positioning of suggestion in the screen space of keyboard. Posi-
tioning of text predictions is a crucial aspect since it deals with the
visual attention of user while typing letters and relates to cognitive
and perceptual influence.

Figure 1 showcases a few gaze-based text entry systems, signify-
ing the variable positioning of predictions in different approaches.
For most of the conventional designs, a predicted word list is placed
on top of the keyboard layout near the text entry area. This can be

(a) Keyboard of OptiKey suite1 (b) AugKey layout [Diaz-Tula and Morimoto 2016]

(c) Eye Typing by MacKenzie & Zhang [MacKenzie and Zhang 2008] (d) GazeTalk Keyboard [Johansen et al. 2003]

Figure 1: Gaze-based text entry keyboards with text predictions at different places
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(a) Blackberry Keyboard

(b) Octopus Keyboard

Figure 2: Virtualmobile keyboards that bring text prediction
close to the keys

seen in the interface (Figure 1a) of a popular open-sourced gaze-
based interaction tool OptiKey. Figure 1c shows the eye typing
approach with word and letter predictions by McKenzie and Zhang
[MacKenzie and Zhang 2008]. Their design, however, places text
predictions below the text area. Figure 1b shows the AugKey ap-
proach [Diaz-Tula and Morimoto 2016] where word suggestions are
framed at the right side of the keyboard and also include prefixes
around the key to exploiting the foveal region of visual perception.
The GazeTalk system [Johansen et al. 2003] provides both word and
letter prediction features (Figure 1d), where the list of predicted
words are on the left side of the key layout, and the preview of the
next character layout is available within the cell that is currently
being selected.

In the field of touch-based text entry on virtual keyboards (e.g.,
text entry on mobile displays), the representation and positioning
of text predictions have received significant consideration. Some
modern virtual keyboard layouts in touch-based text entry domain

present the predictions closer to the attention of the user by em-
bedding them in the keypad as inter-spaced and in-letter dynamic
predictions [Griffin et al. 2015a,b]. Figure 2 shows these popular
designs on Blackberry (Figure 2a2) and iOS keyboards (Figure 2b3).
Cuaresma et al. [Cuaresma andMacKenzie 2013] showed that, bring-
ing predictions closer to user’s attention by in-letter suggestions
in mobile phone keyboards, enhances their ability to interact with
predictions and significantly improves the typing speed by touch
interaction.

These approaches emphasize the role of word prediction in gaze-
based text entry. However, it is unclear if the variable positioning
of these predictions has any impact on the performance by reduc-
ing eye movements, visual search or scanning time. Majranta et al.
[Majaranta 2009] argued that an increase in perceptual and cog-
nitive load occurs due to the shift of focus from the keyboard to
text prediction list and also while scanning it. However, there have
been no concrete studies to investigate if the variable positioning of
text predictions have a correlation with visual attention and could
enhance the user experience while typing. Thus, in this work, we
decided to investigate whether the representation and positioning
of text predictions correlate with the performance for gaze-based
text entry.

3 DESIGN
Design of virtual keyboards (for both touch and gaze-based text
entry systems) involve not only the design and layout of the keys
of the keyboard, but also the position of text predictions. For our
investigation that involved variable positioning of text predictions
to understand its impact of gaze-based text entry, we designed three
different keyboards A, B and C.

Keyboard A (Figure 3a) has a single line of text predictions on
top of the key area. This design has been adapted from the most
conventional design of touch-based text entry keyboards. This also
represents the most prevalent design for gaze-based text entry
keyboards. Keyboard B (Figure 3b), is an inter-spaced keyboard that
has been designed to bring the text predictions inside the keyboard
layout. The predictions are displayed as inter-spaced in the line
over the last triggered letter to reduce the visual distance to the last
area of fixation. The inter-spacing was inspired from keyboards
as shown in Figure 2. This design was also made to investigate if
the findings by Cuaresma et al. [Cuaresma and MacKenzie 2013]
for mobile phone keyboards also hold for gaze-based text entry
systems. Keyboard C (Figure 3c), embeds the prediction related to
the letter on the representative key. This was done to bring the
visual focus on the keys. It also has the single line of text prediction
on the top of the keyboard area to ensure accessibility to increased
number of text predictions. In all the keyboards, the most relevant
text prediction was placed in the middle followed by left and right
for all the text prediction positions across the three keyboards.

For Keyboard A and Keyboard C, the complete keyboard layout
along with the text prediction area took approximately 65% of the
screen space. For Keyboard B, it was 77% of the screen space. The
on-key suggestions for Keyboard C occupied approximately 30% of
the space of the key on which it was initially displayed.

2https://www.donmckenzie.ca/portfolio/bb-virtual-keyboard/
3http://ok.k3a.me
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(a) Keyboard A: Conventional Keyboard (b) Keyboard B: Bringing text prediction inside Keyboard

(c) Keyboard C: Bringing text prediction inside keys

Figure 3: Keyboard A, B and C designed to evaluate impact of variable text prediction position

For the virtual keyboard interface, both the keys and the word
predictions are main responsive elements, arranged in QWERTY
order. The QWERTY layout was modified to include the most used
punctuation [Cook 2014] for quicker access. The change in layout
with the above mentioned dimension percentages was done to
utilize the limited space and eye tracker’s accuracy. The font on
these elements is rendered in white while the fore- and background
is kept in shades of dark and unsaturated green to provide a clean
and non-distracted experience.
Interaction is implemented via dwell time of 1.0 seconds for key
activation. The status of dwelling is queried to the user with a
transparent orange circle centered in the middle of the element and
growing at fixation until filling the complete element. When the
complete element is filled, the key or prediction is activated and
the content added to the collected input.

Keys in Keyboard C feature a two-step dwell time approach.
It requires a second dwell time for activation of the offered text
predictions. Once the letter is selected by the first step of dwelling,
the key switches to selection of the prediction on it during the
second step of dwelling. Same duration of fixation dwell time is
necessary to trigger the input of the displayed text prediction. The

space and the backspace key in Keyboard C include a preview of the
currently edited word after activation of these keys. This integrates
into the concept of locating the visual focus on the keys. All the
keyboards include a special key in the lower left part to repeat the
last letter for double-lettered words. This was necessary only for
Keyboard C as it does not allow for repetitive key activation. The
offered suggestion gets activated during a second dwell time phase
instead of the selected letter again.

The experimental keyboards are implemented in C++ and uti-
lizes OpenGL API for rendering. Font rasterization is being done by
FreeType24 librarywhich renders font letters onto bitmaps. DejaVU-
Sans Mono5 has been chosen as the font for both text and letters
on the keys. The generated letter bitmaps are collected on a tex-
ture atlas in an OpenGL texture object. This provides a completely
customized visual representation and interaction. It enabled us to
create the three different keyboard layouts with similar designed
elements while only differing the text prediction positioning.

4http://www.freetype.org
5https://dejavu-fonts.github.io

http://www.freetype.org
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Presage6 library was employed for word predictions. It is able to
predict the completion of the currently typed word or the upcoming
one while delivering multiple results with a different probability. All
advanced features were deactivated to avoid bias in the experiment.
An n-gram corpus of 50 thousand random English sentences from
Tatoeba7 was initialized. In addition, the words contained in the
experimental data set were also added to the prediction machine’s
dictionary in random order. This ensured existence of all required
words but does not lead to a perfect suggestion system where the
next word is predicted after a few typed letters.

4 METHODOLOGY
The study involved five consecutive eye typing sessions on differ-
ent days. The participants were asked to perform the experiment
on the keyboard layout that was allotted to them as per the Latin
Square ordering. This was done to nullify the effect of bias. The
experiment was conducted in a controlled lab environment with
artificial illumination. (See Figure 4 for the experimental setup). The

Figure 4: Experimental Setup: A participant (for privacy is-
sues, the face is blurred) performing the experiment for
Keyboard A evaluation on a monitor equipped with an eye
tracker.

dependent (measured metrics: wpm, backspace usage, error rate,
keystroke saved), independent (test conditions: keyboard layouts,
suggestion positioning, visual feedback) and controlled variables
(ambient lighting, font size, font colour, key size, key colour, sugges-
tion size, visual feedback colour etc.) were clearly noted for proper
execution of the experimental process. Before the actual experi-
mental study, a pilot test was conducted with four participants to
validate the experimental procedure. The participants were asked
to enter each time a single sentence which is presented in the text
area in the upper region of the keyboard interface. At first key-
stroke, the sentence disappeared and the participant had to recall
the sentence in order to continue. This procedure simulates free
writing and prohibits the participants from comparing the collected
input with the desired result, which would influence the gaze data
strongly [Kurauchi et al. 2016].

6http://presage.sourceforge.net
7https://tatoeba.org/eng

4.1 Participants
The main experimental session consisted of 10 participants (5 Male
and 5 Female). The participants’ age ranged between 21 to 30 years
(mean = 24.8, SD = 2.348). Due to technical challenges, we consid-
ered 9 participants as the data recorded for 1 of the participants
got corrupt and could not be recovered. 70% of the participants
wore spectacles and none of them had prior experience with eye
tracking/typing environment. However, all of them have adequate
experience with computer usage and all of them were familiar with
the QWERTY layout of a keyboard. All the chosen participants
were well versed in English, although none of them were native
English speakers.

4.2 Apparatus
An SMI REDn eye tracker running at 60Hz was attached to a 24-inch
monitor that displayed 1280 x 800 pixels. The participants were
asked to sit on a height adjustable chair that was adjusted prior to
the calibration process to center the eyes in a distance about 70 cm
from the screen. Calibration of the SMI eye tracker was done by
SMI calibration tool. However, when participants reported about
too much drift, re-calibration was done.

4.3 Procedure
The experiment consisted of five sessions for each keyboard and
each session had five sentences. The sentences were given from a
phrase set by Mackenzie and Soukoreff [MacKenzie and Soukoreff
2003]. The area of the collected text can be seen in Figure 3a, 3b
and 3c. Each participant was introduced to a training phase which
consisted of two sessions of 5 sentence each for the participants
to get familiarized to the environment. The system was reset for
every session so that predictive engine would not lead to any bias
for text prediction. Participants were instructed to use the physical
space bar on the physical keyboard in front of them to access the
next sentence in the experiment. In summary, the design was:

9 participants ×
3 keyboard designs ×
5 sessions ×
5 sentences in each session (excluding practice phrases)
= 675 submissions in total.

5 RESULTS
Standard metrics for text entry evaluation include [MacKenzie
and Tanaka-Ishii 2007a; MacKenzie and Zhang 1999]: (i) Words
Per Minute, (ii) Error, (iii) Keystrokes Saved. We have evaluated
two other parameters to understand the usage of text prediction
in a gaze typing scenario (iv) Backspace Key usage and (v) Text
Prediction usage. The metrics below give a detailed direction to the
findings. While performance from typing speed does indicate non-
significant change, there is, however, a high usage of suggestions
and backspace keys.

5.1 Words per Minute (WPM)
Words or Characters per minute forms one of the most basic metric
for evaluating text entry. For this analysis, WPM was calculated as:
((|T | − 1) ∗ 60) ÷ (5 ∗ s) where |T | is the length of the transcribed
string and “s” is the time taken to transcribe the text in seconds,

http://presage.sourceforge.net
https://tatoeba.org/eng
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including backspaces and 5 represents the average characters in a
word [MacKenzie and Tanaka-Ishii 2007b]. For each sentence and
each session, the words per minute have been calculated.

1 2 3 4 5
Session

4

6

8

10

12

W
PM

Keyboard A
Keyboard B
Keyboard C

Figure 5: Words per Minute performance across different
sessions for Keyboard A, B and C

WPM of 9 participants across 5 sessions for three different key-
boards designs can be seen in Figure 5. ANOVA on WPM across
different sessions for the three different keyboards reveal a non-
significant effect, F2,12 = 0.420,p = 0.67(ns), with the grand mean
of each of the keyboards being very close to one another: 9.57, 9.36
and 9.65 wpm for Keyboard A, B and C respectively. The values
lie well within the range of 7-25 words per minute range reported
in other setups [Majaranta et al. 2006; Ward and MacKay 2002],
indicating reasonable eye typing speed. More specifically, for a
dwell-based keyboard with no extensive training, the noted text
entry rate lies on the upper range. For example, gaze-based text
entry speeds using dwelling is about 10 wpm after about 10 training
sessions [Majaranta and Räihä 2002].

No significant learning effect was observed across the perfor-
mance of the three keyboards.

5.2 Error
Uncorrected errors are characters that are missed or wrongly en-
tered in comparison to the original sentence and not corrected.
Levenshtein Distance is one measure of calculating the edit distance
that measures the deviation of the input sentence with respect to
the original sentence. The grand mean of the uncorrected error
for the three keyboards across different sessions are 0.56, 1.36 and
0.88. Figure 6 shows the errors left uncorrected by the participants
across 5 sessions.

Shapiro Wilk Test revealed the data to be not normally dis-
tributed. Hence we used a Friedman test, which gave a significant
result with p = 0.02. Keyboard A had the least number of errors
followed by Keyboard C and B.

No learning effect for uncorrected error is observed across the
performance on the three keyboards.

1 2 3 4 5
Session

0

2

4

6

Un
co
rre

ct
ed

 E
rro

r

Keyboard A
Keyboard B
Keyboard C

Figure 6: Uncorrected Error across different sessions forKey-
board A, B and C

5.3 Keystrokes Saved
Measurement of keystrokes is another important measure of perfor-
mance in text entry system. Use of text prediction reduces keystrokes
thus leading to faster text entry speed. In this experimental study,
every keystroke was calculated and compared against the original
count of letters for the sentence they were provided with. The per-
centage of keystrokes saved across different sessions for the three
keyboards designs is shown in Figure 7. Grand mean of 35.48%,
34.54% and 28.16% of saved keystrokes were recorded for the three
keyboards across five sessions.

ANOVA shows significant result with F2,12 = 9.56;p = 0.003
indicating the use of significantly fewer keystrokes to achieve com-
plete sentences in Keyboard A than in B and C.

1 2 3 4 5
Session
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20
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Ke
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s S
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 (%
)

Keyboard A
Keyboard B
Keyboard C

Figure 7: Percentage ofKeystrokes saved across different ses-
sions

No learning effect was observed for keystroke savings across the
three keyboards.
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5.4 Backspace
Backspace usage indicates the number of corrections performed be-
fore confirming a sentence. It is also an indication of the corrections
the participants needed to make when they accidentally selected a
wrong letter or a wrong word prediction from the list. Grand mean
of 0.72, 1.17 and 1.44 backspace hits for the three keyboards were
recorded across five sessions. Figure 8 indicates the efforts required
to formulate a sentence was much higher for Keyboard C and B
by means of deleting the characters. Further investigation of the
backspace usage revealed the high amount of backspaces were used
for correcting/editing the picked suggestions.

ANOVA shows a non-significant result with F2,12 = 3.25;p =
0.07(ns).

1 2 3 4 5
Session

−1
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Keyboard A
Keyboard B
Keyboard C

Figure 8: Backspace Key Usage across different sessions for
Keyboard A, B and C

5.5 Text Prediction Usage
This metric measures the usage of suggestions while formulating
the sentence. It gives us an indication of how effective were the
predictions and how easy was it to access them.

For the Keyboard A with only one suggestion line at the top,
the suggestion usage was 90.12%, over 91.11% for the inter-spaced
Keyboard B, and 93.21% in the Keyboard C with suggestions on the
keys itself. ANOVA gave a non-significant result F2,12 = 0.08;p =
0.92(ns). Figure 9 shows us the session based performance across
the three keyboards.

Further analysis show, suggestions within the layout were well
accepted by the participants. For the inter-spaced layout B, 46.61%
of the used suggestions are chosen from the top, 33.88% from the
center and 19.51% from the bottom positioned line. In the design C
with suggestion enhanced keys 54.37% of utilized suggestions are
taken from the keys instead of the single suggestion line on top.

In spite of high text-prediction usage, there is no significant
learning effect for any of the keyboards.
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Keyboard A
Keyboard B
Keyboard C

Figure 9: Usage of Text Predictions across different sessions
for Keyboard A, B and C

6 DISCUSSION
The experimental evaluation indicates that bringing the suggestions
closer to the visual attention of user does not have a significant im-
pact on text entry performance. Several implications of gaze-based
interactions could arguably be the reason behind these findings.

One major observation is the inessential usage of suggestions by
participants. Text predictions offer users the possibility to reduce
effort by auto-completing the words. However inter-spaced and
in-letter predictions bring the suggestions in the constant visual
attention of users, which might lead them to be overly reliant on
predictions (as we can see with the increment of suggestion usage
for Keyboard B and C). We observed that the participants even
picked partially relevant suggestions with additional suffixes, e.g., a
participant selected the predicted word organization after typing or,
and then edited the terms to write the desired word organize. Such
instances require additional usage of backspace keys and it makes
the actual benefit of predictions much smaller than anticipated,
i.e., picking a suggestion does not necessarily correlate with less
keystrokes to complete the desired word since it involves the editing
task of the picked suggestion which is a non-trivial task in eye
typing

The results in Section 5.4 (Backspace) confirm this assumption,
as the usage of backspace, is much higher for Keyboard C and B
compared to A. To further investigate this phenomenon, we calcu-
lated the number of backspace hits after selection of a suggestion,
since the use of backspace on selected suggestions exhibit the user
behavior on picking partially relevant suggestions. Grand mean of
9 participants across 5 sessions was recorded as 2.56, 3.67, 5.56 for
the three keyboard designs. This indicates that for Keyboard B and
Keyboard C participants tend to use partially correct suggestions
and hence applied more backspaces to correct the suggestions. This
eventually aligns with the result on Keyboard B and C needing sig-
nificantly more keystrokes compared to A (see Section 5.3), despite
of having similar text entry rate.

Dwelling on individual keys to compose a text is demanding
and tedious task, hence user is keen on any additional help by the
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system to ease the task. Text prediction helps user in this aspect,
however like any other recommendation engine, predictions may
not always be absolutely relevant and helpful for user. We can
contemplate that bringing predicted words closer to user attention
has the affect on user cognition, as they become more keen on
picking the suggested options. However this does not translate to
the improved text entry performance.

Another reflection on performance is the rapid eye movements
invalidating the effect of positioning benefit. The major variation in
the design of Keyboard B and C was to bring the predictions closer
to visual focus while selecting letters, so that the user does not need
additional time to switch attention to the external text prediction
list. However, for gaze-based interaction the fast eye movements
might nullify this effect. It has been noted that eye movements are
so fast that it provides an interaction medium potentially faster
than the conventional mouse [Sibert and Jacob 2000]. More specifi-
cally, eye saccades (movement between two consecutive fixations)
are extremely fast movements that commonly takes 30 to 120 ms
having an amplitude range between 1° and 40° (average 15° to 20° )
[Duchowski 2007]. The inspection and selection of prediction can
be done quicker since it requires only one saccade or more saccades
in the same direction. More specifically for the individual keyboard
designs, users retain the position information of word list and hence
can predetermine path to reach the list. The user can mark ahead
path [Kurtenbach and Buxton 1993] and hence the time can be
significantly minimized. Furthermore, the variant position does not
correlate with the scanning cost of text predictions since the user
still has to scan for relevant words to be picked from presented
suggestions irrespective of the positions, i.e., for both Keyboard A
and B user has to look at all three predicted words to find out if the
relevant suggestions are present in the list, for Keyboard A user
has to look at a distant top layout, however, the additional time
required is not very significant due to fast eye movements.

In comparison to touch-based text entry virtual keyboards, eyes
always start moving toward the target before the hand and as eye
movements are quite rapid, the eyes usually arrive at the target
before the hand starts to move [Abrams et al. 1990]. For touch-based
input it’s the combination of hand movement with eye movements
since users need to first look and scan if the suggested word is
relevant and then perform the selection by hand. Therefore, touch-
based selections of text predictions require additional physical
movement, which is not correlated with eye movements [Bekkering
et al. 1994], i.e., hand movements need substantial time for inter-
action distinguished from eye movements. Hence the keyboard
designs to bring the predictions closer for touch-based inputs [Grif-
fin et al. 2015b] invariably helps in reducing the effort of selecting
predictions, and respectively improve the user experience and per-
formance.

7 CONCLUSION
Text prediction is a valuable feature to enhance typing experience.
For text entry with virtual keyboards, representation of relevant
text prediction to end-users become significantly important. In this
paper, we assess the visual representation of text predictions by
evaluating three similar designs of dwell-time based keyboards with
the variable spatial positioning of text predictions. The evaluation

indicates that for gaze-based text entry, the methodology of predic-
tions near the visual fovea makes users heavily dependent on the
given suggestions. While this can be beneficial if the predictions
are useful, it does lead to extensive usage of suggestions that could
inherently hamper the usability.

The variant position does not correlate with the scanning cost of
word predictions since user still has to scan for relevant words to be
picked from presented suggestions. An interesting future direction
would be to investigate this phenomena in large scale studies and
understand understand how the scan time affects typing process
and how it can be minimized to improve the performance.
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